VACATIONRESEARCH SCHOLARSHIPS 2020-21

Optimisation of Surgical Waiting List Management

Jack Powers Supervised by Associate Professor Paul Corry & Professor James McGree Queensland University of Technology

Vacation Research Scholarships are funded jointly by

AMSI CONNECT

Background

 In the Australian public health system, there is often a long waiting list for patients to access elective surgeries due to high demand and the capacity of the health system.

VACATIONRESEARCH SCHOLARSHIPS 2020–21

Background

- In Australia, there are three national categories for surgery prioritisation:
 - Urgent (Category 1) surgery recommended within 30 days of being added to the wait list
 - Semi-urgent (Category 2) surgery recommended within 90 days of being added to the wait list
 - Non-urgent (Category 3) surgery recommended within 365 days of being added to the wait list (Queensland Health 2015)
- This system can be a point of contention and dissatisfaction, due to the subjectivity and lack of clear guidelines in the patient classification process

Background

- Elective surgery waiting lists continue to grow as hospitals struggle to keep up with demand – ABC News – December 2018
- Elective surgery wait lists blowing out, AMA warns, leaving Tasmanian patients waiting years – ABC News – August 2019
- Health Minister Must Act on Elective Surgery Tasmanian Greens – September 2020
- COVID-19 a plague on elective surgery wait lists The Sydney Morning Herald September 2020
- Australia: Inquiry reveals chronic under funding and lengthy wait times for South-West Sydney health services – World Socialist Web Site – January 2021

VACATIONRESEARCH SCHOLARSHIPS 2020–21

Aims

- Investigation of an alternative patient ranking system for elective surgeries
- Current prioritisation system:
 - Patients admitted to surgery based on urgency category
 - Some category 2 & 3 patients may experience extremely large wait times
- Priority score based system:
 - Use of a single waiting list, where patients are ranked according to clinical factors and time spent on waiting list
 - Clinical factors inform the priority coefficient, according to some mathematical formula, which is then multiplied by time to give a priority score
 - Patients admitted to surgery in descending order of priority score

VACATIONRESEARCH SCHOLARSHIPS 2020–21

Aims

- The key aims of this project was to:
 - Conduct a literature review of the current patient prioritisation environment in Australia and the world
 - Develop a model which represents the current three category patient prioritisation system in Australia
 - Develop a proof of concept waiting list model for a priority score system, similar to that of the work already completed in the world
 - Conduct preliminary analysis and verification of the developed model to existing work

- Little prior research on explicit priority score ranking models
- Large volume of work required to support such a project
 - Acceptability of waiting lists in health care
 - Individual surgeon management of patients vs nationally agreed system
 - Weightings of various clinical factors deemed to be important and relevant to elective surgery prioritisation
- Surgical Waiting List Info System (SWALIS) project
 - 2006, Italy
 - A. Testi, E. Tanfani, R. Valente
 - Web based patient priority scoring system taking into account clinical factors and time spent on waiting list.

- Priority scoring system (*Prioritizing surgical waiting lists* Testi et al., 2006)
 - Use of a prioritisation formula in the general form of $P = \alpha t$
 - *P* is the priority score
 - α is the urgency coefficient of the patient
 - *t* is time spent on the waiting list in days
 - Urgency coefficient (α) determined from clinical judgment of the patient's condition according to a set of predetermined criteria with associated weightings
 - In the work of Testi et al., three clinical criteria used, where treating surgeon provides a score between 0 and 4
 - Disease progression or deterioration (r)
 - Pain or dysfunction (p)
 - Disability (*d*)

VACATIONRESEARCH SCHOLARSHIPS 2020–21

- Clinical criteria
 - Disease progression or deterioration (*r*)
 - Pain or dysfunction (p)
 - Disability (d)
- Priority score

•
$$P = \begin{cases} 3r^2t, & r > 0\\ (1+0.5p^2+0.5d^2)t, & r = 0 \end{cases}$$

- If there is risk of disease progression, other criteria become irrelevant, otherwise pain or dysfunction (p) and disability (d) weighted equally
- Key findings:
 - Average weighting time increased
 - Standard deviation of weighting time decreased (perhaps indicator of improved equity)

Prior Research

 Weightings of various clinical factors (Developing a universal tool for the prioritization of patients waiting for elective surgery -Solans-Domenech et al., 2013)

Dimension	Criteria	Weighting
Clinical-functional impairment	Disease severity	23%
	Rate of disease progression	15%
	Pain (or other main symptoms)	14%
	Difficulty in doing daily life activities	14%
Expected benefit	Probability and degree of improvement	12%
	Limitations in the ability to work, study, or seek employment	9%
Social role	Limitation to care for one's dependents (if relevant)	8%
	Being dependent with no caregiver	5%

- Achieving waiting list reform: a pilot program integrating waiting time, category and patient factors Siddins et al., 2012
 - Similar priority system to that of Testi et al., utilising customised patient booking forms for each procedure

Model Development

- Development of a three category system and a priority score system
- Simulation model in Python
 - Discrete event simulation library SimPy
- Simulation parameters chosen arbitrarily
 - Model represents a proof of concept
 - Arbitrary units and time horizon
 - Randomly generated patient data
 - Arbitrarily chosen arrival rates, surgery and simulation length
 - Single simulation repetition
 - Not statistically rigorous

Get a Thirst for Research this Summer

Model Development

- Simulation parameters and initial conditions
 - Note: arbitrary time units and lengths
 - Patient backlog: 20
 - Simulation length: 3000
 - Number of operating theatres: 2
 - Average patient interarrival time: 11
 - Surgery duration: 20
 - Patient data (urgency category, clinical factor scores, etc.) generated according to a uniform distribution
 - Under classical queuing theory, the proportion of time in which each server is occupied, the system utilisation parameter (ρ) is

$$\rho = \frac{\text{arrival rate}}{\text{service rate}} = \frac{1/11}{2 \times 1/20} = 0. \ \overline{90} < 1$$

System operates under steady state conditions

Treated in turn proportion

- Metric used by Queensland Health
 - "Within each urgency category, a minimum of 60% of elective surgery patients should be treated in the same order as they are added to the waiting list"
- Designed to minimise queue jumping while balancing clinical need
 - Essentially, a first in, first out (FIFO) queue
- Measures patients who are disadvantaged by queue jumping
 - For example, if a patient enters the waiting list as the 10th patient:
 - Classified as treated in turn if they entered surgery as the 10th or less patient
 - Classified as treated out of turn if entered surgery as the 11th or greater patient

SCHOLARSHIPS 2020-21

Three category system

Three category system

Three category system

- Average resources occupied: 1.795
 - Average system utilisation: $\frac{1.795}{2} = 0.8975$ ($\rho \approx 0.91$)
- Treat in turn proportion: 73.5%

	Time in queue			
Priority	Mean	Median	\mathbf{SD}	
1	16.83	8.79	24.8	
2	27.1	12.1	41.35	
3	145.23	90.64	146.27	
Aggregated	60.99	14.17	104.45	

 Weightings of various clinical factors (Developing a universal tool for the prioritization of patients waiting for elective surgery -Solans-Domenech et al., 2013)

Dimension	Criteria	Weighting
Clinical-functional impairment	Disease severity	23%
	Rate of disease progression	15%
	Pain (or other main symptoms)	14%
	Difficulty in doing daily life activities	14%
Expected benefit	Probability and degree of improvement	12%
	Limitations in the ability to work, study, or seek employment	9%
Social role	Limitation to care for one's dependents (if relevant)	8%
	Being dependent with no caregiver	5%

- severity (s),
- pain (*p*),
- rate of disease progression (r),
- difficulty in doing daily life activities (l),
- probability and degree of improvement (i),
- being dependent with no caregiver (d),
- limitation to care for one's dependents if relevant (c),
- limitations in the ability to work, study, or seek employment (w)

•
$$P = \begin{cases} 3(0.6r^2 + 0.4s^2)t, & r > 2\\ (1 + 0.23s^2 + 0.14p^2 + 0.15r^2 + 0.14l^2 + 0.12i^2 + 0.05d^2 + 0.08c^2 + 0.09w^2)t, & r \le 2 \end{cases}$$

Patient P-Score

Ranking

- Average resources occupied: 1.82
 - Average system utilisation: $\frac{1.82}{2} = 0.91$ ($\rho \approx 0.91$)
- Treat in turn proportion: 68.21%

	Time in queue	P-score on admission	P-score coefficient
Mean	68.82	628.94	14.79
SD	82.99	534	10.76
Median	40	438	9.58

Comparison

- Three category system vs priority score system
- Behavior of queuing time mean and standard deviation in both models similar to Testi et al. (2006)

	Time in queue			
Model	Mean	\mathbf{SD}	Treat in turn $\%$	Average system utilisation
Three category system	60.99	104.45	73.5%	0.8975
P-score system	68.82	82.99	68.21%	0.91

VACATIONRESEARCH SCHOLARSHIPS 2020–21

Conclusion

- Key indicators for verification against the work of Testi et al. (2006)
 - Larger average queueing time
 - Smaller queueing time standard deviation
- All results are preliminary
 - Arbitrary parameters
 - Single simulation replication
 - More replications required to obtain statistically significant evidence
- Priority scoring fundamentally changes patient ordering
 - Has the potential to revolutionise elective surgery waiting lists
 - More research would be required

VACATIONRESEARCH SCHOLARSHIPS 2020-21

Get a Thirst for Research this Summer

